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ABSTRACT

The shear flow influences the stability of magnetohydrodynamic (MHD) waves. In the presence

of a dissipation mechanism, flow shear may induce a MHD wave instability below the threshold of

the Kelvin-Helmholtz instability (KHI), which is called dissipative instability (DI). This phenomenon

is also called negative energy wave instability (NEWI) because it is closely related to the backward

wave which has negative wave energy. Considering viscosity as a dissipation mechanism, we derive an

analytical dispersion relation for the slow sausage modes in a straight cylinder with a discontinuous

boundary. It is assumed that the steady flow is inside and dynamic and bulk viscosities are outside

the circular flux tube under photospheric condition. When the two viscosities are weak, it is found

that for the slow surface mode, the growth rate is proportional to the axial wavenumber and flow

shear, consistent with in the incompressible limit. For a slow body mode, the growth rate has a

peak at certain axial wavenumber and its order of magnitude is similar to surface mode. The linear

relationship between the growth rate and the dynamic viscosity established in the incompressible limit

develops nonlinearly when the flow shear and/or the two viscosities are sufficiently strong.

Keywords: magnetohydrodynamics (MHD) – waves – Sun: oscillations – Sun: photosphere

1. INTRODUCTION

The non-uniform structure of solar atmosphere influences
the behaviors of the magnetohydrodynamic (MHD) waves.
The shear flow substantially modifies the characteristics of
the wave modes (e.g., Nakariakov & Roberts 1995, Yu &
Nakariakov 2020, Skirvin et al. 2022). The Kelvin-Helmholtz
instability (KHI) may arise due to the background shear
flow (Chandrasekhar 1961, Rae 1983, Zhelyazkov & Za-
qarashvili 2012), or due to the dynamic velocity shear in-
duced by waves (Magyar & Van Doorsselaere 2016). The
KHI is of particular importance for its cause of mixing or
turbulence which leads to heating via energy transfer into
smaller scales (Karpen et al. 1993, Karampelas & Van Doors-
selaere 2018, Guo et al. 2019).

When there is a dissipative process, shear flow may in-
duce another type of wave instability called dissipative in-
stability (DI) where the viscosity shear is usually adopted
for the dissipation mechanism (Cairns 1979). The DI is
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closely connected to the occurrence of the negative energy
wave (NEW). The backward wave has negative energy when
the flow shear exceeds a threshold called critical speed, which
is lower than the threshold for KHI, and copropagates with
the forward wave (Cairns 1979, Joarder et al. 1997, Ruder-
man & Goossens 1995, Yu & Nakariakov 2020).

Studies for the DI range from the convection zone to the
corona. Ryutova (1988) first addressed the importance of
the negative energy wave (NEW) in the solar atmosphere.
She studied the kink modes in the long wavelength limit in
the thin magnetic flux tube. Ruderman & Goossens (1995)
considered the propagating surface Alfvén wave with neg-
ative energy in a plasma slab, showing its increment is in
proportion to the viscosity. Anisotropic viscosity and ther-
mal conductivity in a compressible plasma was considered
by Ruderman et al. (1996), who showed that the presence
of viscosity lowers the threshold for instability. Joarder et
al. (1997) discussed the criterion for the NEW in a plasma
slab structure where photosphere, corona, and solar wind
were of interest. Holzwarth et al. (2007) investigated the
Parker-like instability (PI), KHI, and DI in the convection
zone, obtaining that the critical speed is below the thresh-
olds for the KHI and PI. Considering the radiative loss as a
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dissipation mechanism for the slow body modes in a coronal
jet, Pourjavadi et al. (2021) found that DI for slow sausage
modes is weaker than for slow kink modes except where the
axial wavelength goes to infinity. The DI was shown to be-
come more complicate by considering ionization degree for
the prominence plasma slab (Ballai et al. 2015, Ballai et
al. 2017). Yu & Nakariakov (2020) studied the DI of MHD
surface modes in an incompressible plasma cylinder, pointing
out that the sausage mode (m = 0) and the higher modes
(m ̸= 0) have different behaviors.

DI can occur in a similar situation for KHI since a damping
(decay) mechanism is added to the situation of KHI. Despite
the efforts for some decades, the DI is not well-understood
yet and there is still no analytical theory for DI in a com-
pressional plasma cylinder. The primary aim of this paper
is to develop an analytical theory of the DI in a compres-
sional plasma, generalizing the theory of Yu & Nakariakov
(2020). As a first step, we focus on the slow sausage modes
under photospheric condition, where DI is induced by vis-
cosity shear and flow shear in a cylindrical compressional
plasma penetrated by an axial magnetic field. In the photo-
sphere the flow speed is in the range of sound speed therein
(e.g., Keil et al. 1999), thus the slow modes can be of concern
for DI.

The paper is organized as follows. We describe the model
and develop the analytical theory in Sec. 2. The numerical
results are shown in Sec. 3 and conclusions in Sec. 4.

2. MODEL

The governing equations are the viscous MHD equations
for a compressible plasma (e.g., Priest & Forbes 2007):

∂ρ

∂t
+∇ · (ρv)=0, (1)

ρ
∂v

∂t
+ ρv · ∇v +∇p− j ×B=µ∇2v + ς∇(∇ · v), (2)

∂p

∂t
+ v · ∇p+ γ0p∇ · v =0, (3)

∂B

∂t
−∇× (v ×B)=0, (4)

j − 1

µ0
∇×B=0, (5)

where ρ is the density, v is the velocity, B the magnetic field,
p the pressure, and j the electric current density, µ0 is the
permeability of vacuum and γ0(= 5/3) is the ratio of specific
heat, ς = ζ+µ/3, µ is the shear (dynamic) viscosity, and ζ is
the bulk viscosity. Here we ignore the effects of gravitation
and partial ionization.

We consider a cylindrical flux tube with the radius R, of
which the inside and outside regions are homogeneous with
different parameter values. It is assumed that the equilib-
rium maintains the pressure balance

pi +
B2

i

2µ0
= pe +

B2
e

2µ0
, (6)

where the subscript i(e) denotes the parameter inside (out-
side) the flux tube. The background axial flow is assumed to
be in the inside and the two viscosities in the outside. From
the viscous MHD equations, we derive linear wave equations

for each regions by applying Fourier transform with the fac-
tor exp[−i(ωt − kzz)] where ω is the angular frequency of
the wave and kz is the axial wavenumber. We then obtain
the dispersion relation with the help of the matching condi-
tions at the flux tube boundary (r = R). We also obtain the
criterion and critical speed for the negative energy wave.

2.1. Wave equation inside the flux tube

When there are steady background flow (U0 = (0, 0, U))
and magnetic field (B0 = (0, 0, Bi)) in the axial direction,
we have two coupled differential equations for the perturbed
total pressure P and the radial Lagrangian displacement ξr
(e.g., Goossens et al. 1992) as

D1
d(rξri)

dr
=−rC1Pi, (7)

D1
dPi

dr
=C2ξri, (8)

where

D1 = ρi(v
2
si + v2Ai)(Ω

2 − ω2
Ai)(Ω

2 − ω2
ci), (9)

C1 =Ω4 − k2z(v
2
si + v2Ai)(Ω

2 − ω2
ci), (10)

C2 = ρ2i (v
2
si + v2Ai)(Ω

2 − ω2
Ai)

2(Ω2 − ω2
ci), (11)

Ω=ω − kzU, (12)

and ωAi = vAikz, ωci = vcikz, vAi = Bi/
√
ρiµ0 is Alfvén

speed, vsi =
√
γ0pi/ρi is the sound speed and vci =

vsivAi/
√
v2si + v2Ai. The radial displacement ξri has the re-

lation with the perturbed radial velocity vri (Goossens et
al. 1992)

ξri =
i

Ω
vri. (13)

Eqs. (7) and (8) have Bessel functions as solutions.

2.2. Wave equation outside the flux tube

For the outside of the flux tube we assume viscosity terms
and no background flow where B0 = (0, 0, Be). Instead of
deriving wave equations for the displacement ξ and the per-
turbed total pressure P , we derive a governing wave equation
for the divergence of the perturbed velocity △ ≡ ∇ · v1 =
ψ(r) exp[−i(ωt− kzz)] (see Appendix A):

ω4△e +

[
(v̄2se + v2Ae)ω

2 −

(
v2Aev̄

2
sek

2
z +

iµ

ρe
ω3

)]
∇2△e

− iµω

ρe
(v̄2se + v2Ae)∇4△e = 0, (14)

where ∇2 is Laplacian and v̄2se = v2se− iω µ+ς
ρe

. This equation
can be further reduced to

A

[
d4ψ(r)

dr4
+

2

r

d3ψ(r)

dr3

]
−

[
A

(
2k2z +

1

r2

)
− 1

]
d2ψ(r)

dr2

−

[
A

(
2k2z − 1

r2

)
− 1

]
1

r

dψ(r)

dr
− n2ψ(r) = 0, (15)



3

where

A=
iµω

ρe(ω̄2
ce − ω2)

, (16)

n2 =
ω4 − k2z(v̄

2
se + v2Ae)

(
ω2 − ω̄2

ce +
iµω
ρe
k2z

)
(v̄2se + v2Ae)(ω̄

2
ce − ω2)

, (17)

ω̄2
ce =

(
v̄2sev

2
Aek

2
z + iµ

ρe
ω3
)

(v̄2se + v2Ae)
. (18)

Eq. (15) has Bessel functions of order zero as analytical so-
lutions (e.g., Geeraerts et al. 2020). In the present paper we
use for the solution the modified Bessel function of second
kind, K0(kr), where

k = k± =

√
−1 + 2Ak2z ±

√
(1− 2Ak2z)2 + 4An2

2A
. (19)

When µ(ς) = 0, Eq. (15) reduces to the well-known Bessel’s
differential equation.

As k± includes imaginary terms, the solution itself is
a complex function. It was illustrated by Geeraerts et
al. (2020) that the solution function behaves like body-like
or surface-like mode depending on the values of the complex
eigenfrequency obtained from the dispersion relation.

2.3. Dispersion relation for the case with shear flow

We first consider the situation with no viscosity. We as-
sume the background flow is inside the flux tube as in Sec. 2.1
and no flow for the outside region. Using the matching con-
ditions at r = R (e.g., Goossens et al. 1992, Yu et al. 2017,
Sadeghi et al. 2021)

ξri = ξre, (20)

Pi =Pe, (21)

we derive the dispersion relation as

ρi(Ω
2 − ω2

Ai)− ρe(ω
2 − ω2

Ae)
ki
ke
Q0 =0, (22)

where

k2i = f
(Ω2 − ω2

si)(Ω
2 − ω2

Ai)

(v2si + v2Ai)(Ω
2 − ω2

ci)
, (23)

k2e =− (ω2 − ω2
se)(ω

2 − ω2
Ae)

(v2se + v2Ae)(ω
2 − ω2

ce)
, (24)

Q0 =F0(kiR)
K0(keR)

K′
0(keR)

, (25)

and

f =

{
−1 for surface modes

1 for body modes
, (26)

F0(kiR)=

{
I′0(kiR)

I0(kiR)
for surface modes

J′
0(kiR)

J0(kiR)
for body modes

. (27)

Here J0(I0) is the (modified) Bessel function of first kind and
the prime denotes the derivative with respect to the entire
argument.

0 1 2 3 4 5
0 . 8

1

1 . 2

1 . 4

1 . 6

v/v
si

k z R

 f s s
 s b s  1
 s b s  2
 s b s  3
 s s s

v s e

v s i

v c i

Figure 1. Phase speeds v+ vs. kzR for the forward sausage
modes under photospheric conditions where vse = 1.5vsi,
vAi = 2.0vsi, vAe = 0.5vsi, vci ≈ 0.8944vsi and vce ≈
0.4743vsi: fast surface sausage mode (fss), slow body sausage
modes (sbs 1-3), and slow surface sausage mode (sss). These
parameter values are used throughout the figures.

2.4. Negative energy waves

The threshold of flow shear for NEW is called the critical
speed. When the flow shear is higher than the critical speed,
the wave energy of the backward wave becomes negative.
The criterion for the NEW is given as (Cairns 1979, Joarder
et al. 1997, Marcu 2007, Yu & Nakariakov 2020)

C = ω
∂D
∂ω

< 0. (28)

The dispersion function D has to be suitably defined for the
characteristic function C to be positive when U = 0. We may
define D as

D = χ(Ω̃2 − ω̃2
Ai)− (ω̃2 − ω̃2

Ae)
ki
ke
Q0, (29)

where χ = ρi/ρe and tilde means the parameters are nor-
malised by ωsi. Similarly, the characteristic function C can
be defined as C = vp

∂D
∂vp

where vp = ω/kz. We note that

an analytical expression of C is possible when following the
procedure to obtain ∂D

∂ω
in Yu et al. (2017) or in Sadeghi et

al. (2021).
The phase speed of the backward wave changes its sign

when the flow shear crosses the critical speed. Therefore,
one may obtain the critical speed by setting ω = 0 in the
dispersion relation (22) (e.g., Yu & Nakariakov 2020). See
Fig. 5.

2.5. Dispersion relation with shear flow and viscosity

Now we consider the situation that there exist flow in-
side and viscosity outside the flux tube. When the viscosity
terms are included there can exist two wave solutions outside
the flux tube, so the wave solution ψ(r) has in general the
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Figure 2. (a) Phase speed v− and (b) Doppler-shifted
phase speed Ω− of the backward slow surface sausage mode
vs. kzR.

following form

ψ(r) =

{
A1F0(kir) for r < R

A2K0(k+r) +A3K0(k−r) for r > R
, (30)

where A1, A2, and A3 are arbitrary complex constants, and

F0(kir)=

{
I0(kir) for surface modes

J0(kir) for body modes
. (31)

In the presence of viscosity outside the flux tube, the bound-
ary condition (21) changes to

Pi = Pe − 2µ
∂vre
∂r

−
(
ζ − 2µ

3

)
△e. (32)

Since we have three unknown variables, A1, A2, and A3, we
need another boundary condition for the perturbed magnetic
field in z direction, bz, (e.g., Geeraerts et al. 2022):

bzi = bze. (33)

Using Eqs. (20), (32), and (33), we derive a matrix equationX1 X2 X3

X4 X5 X6

X7 X8 X9

A1

A2

A3

 = XA = 0, (34)
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Figure 3. (a) v− and (b) Ω− of the backward slow body
sausage mode 1 (sbs 1) vs. kzR. Inset in (b) illustrates the
turning behavior of dispersion curve at U/vsi ≈ 0.9

where X1, X2, . . . , X9 are shown in Appendix B.
To have a non-trivial solution for Eq. (34), It should be

det(X) = 0, which yields the dispersion relation

X1(X5X9 −X6X8)−X2(X4X9 −X6X7)

+X3(X4X8 −X5X7) = 0. (35)

Similarly to the solution for κ+ in Geeraerts et al. (2020),
the solution for k− represents the electromagnetic bound-
ary layer (Hartmann layer) at r = R. In the limit µ → 0
and ζ → 0, |k−| → ∞. The solution for k+ corresponds to
wave part. For the present problem, the numerical results
including the solution for k− are found to be physically un-
acceptable. Thus, by ignoring the term for k− (A3 = 0), we
derive the following dispersion relation, using Eqs. (20) and
(32),

X1X5 −X2X4 = 0. (36)

The use of Eq. (33) for the boundary condition also gives
wrong results. Eq. (36) reduces to Eq. (22) when µ = ζ = 0.

3. RESULTS
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Figure 4. The characteristic function C of the slow surface
sausage (sss) mode vs. kzR.

3.1. Dispersion curves with shear flow and without

viscosity

We first consider the behavior of the dispersion curves for
the sausage modes depending on the flow speed U in the ab-
sence of the viscosity. The dispersion relation (22) allows two
phase speeds vp = v±. The phase speed v+(v−) corresponds
to propagation in the positive (negative) z direction with
the relation v− = −v+ in the absence of the steady flow. In
Fig. 1 we plot the phase speed of the forward sausage modes,
v+/vsi, vs. kzR under a photospheric condition in the pres-
ence of no flow shear, where vse = 1.5vsi, vAi = 2.0vsi,
vAe = 0.5vsi, vci ≈ 0.8944vsi and vce ≈ 0.4743vsi (Edwin &
Roberts 1983). We use these parameter values through the
paper. There appear three kinds of eigenmodes: fast surface
(fss), slow surface (sss) and slow body (sbs) modes. Three
body modes are plotted among multiple solutions.

Since the NEWI or DI occurs for the backward wave (v−),
we focus on the backward wave modes. Fig. 2 (a) represents
the dependence of the dispersion curve of the backward slow
surface sausage (sss) mode, v−, on the flow speed U . The
phase speed v− tends to shift upward as U increases, while
there appears a gap when 0.3 < U/vsi < 1.5. The Doppler-
shifted phase speed in Fig. 2 (b) shows that in this range
Ω < −ωci and the slow surface mode is not allowed. When
Ω > ωci the slow surface mode also does not exist.

In Fig. 3 we plot U dependence of (a) the phase speed v−
and (b) Doppler-shifted phase speed Ω− for the backward
body mode 1 (sbs 1). The phase speed v− goes upward as
U increases without gap appearance. The Doppler-shifted
phase speed Ω− shows its change of direction at U/vsi ≈ 0.9.

3.2. Characteristic function C and critical speed Uc

In Fig. 4 we present the characteristic function C vs. kzR
for the slow surface sausage mode, using Eqs. (28) and (29).
This mode becomes NEW when the flow shear is above the

0 1 2 3 4 5
0 . 8 8

0 . 9

0 . 9 2

0 . 9 4

0 . 9 6

0 . 9 8

v/v
si

k z R

 U c  
 s b s  1

Figure 5. The critical speed Uc and dispersion curve of
the slow body sausage (sbs) mode 1 vs. kzR.

gap regime. On the other hand, it is not possible to obtain
the critical speed due to the gap appearance.

For the body modes, the situation is opposite. The charac-
teristic function C using dispersion function (29) is incorrect
and of which a suitable form was not found due to its singu-
lar behavior in the concerned range of vp. Instead, we obtain
the critical speed Uc from the dispersion relation (22) with
the condition ω = 0, as explained in Sec. 2.4. Fig. 5 gives
Uc and v− vs. kzR for the slow body mode 1 (sbs 1). It
reveals that for the DI (NEWI) to occur, the flow shear has
to be at least higher than the phase speed. If Uc is fixed,
the corresponding kz is also fixed. By denoting this value
kc, there will be a sign change of the phase speed v− in both
real and imaginary parts when kz goes through kc. When
U/vsi = 0.9 kcR ≈ 0.6.

3.3. Dispersion curves with shear flow and viscosity

In this subsection, we solve the dispersion relation (36),
considering both flow and viscosity. We first consider the
slow surface sausage mode. In Fig. 6, we plot (a) Doppler-
shifted real part and (b) imaginary part of the phase speed
v− and (c) their ratio, γ (=Im(v−)/Re(v−)), as a function
of kzR with varying U/vsi where µ̃(= µ/(ρevseR)) = ζ̃(=
ζ/(ρevseR)) = 10−4. Fig. 6 (a) and (b) show that both
real and imaginary parts of phase speed v− shift upward as
U increases. Fig. 6 (c) indicates that γ tends to increase
with the increment of U and kz in the negative energy wave
regime (C < 0). The same trend was previously shown for
the incompressible plasma (Yu & Nakariakov 2020). The
order of magnitude is ∼ −6 (γ/µ̃ ∼ 10−2).

It may be more useful to use γ/µ̃ for estimating the
strength of the instability. Yu & Nakariakov (2020) showed
that γ of the surface mode in an incompressible plasma is a
linear function of µ̃ (ν̃e therein). Its order of magnitude is
∼ 1 for underdense and ∼ −1 for overdense plasmas. This
implies that the strength of dissipative instability in the com-
pressible plasma is weaker than in the incompressible plasma.
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We examine whether the linear relation between γ and
µ̃ obtained in an incompressible plasma (Yu & Nakariakov
2020) is valid or not for the compressional plasma. In Fig. 7
we compare two situations, U/vsi = 1.5 (left column) and
U/vsi = 1.6 (right column), with variation of µ̃(= ζ̃). In the
first row, (a) and (b), the effect of µ̃ on Doppler-shifted phase
speed is shown to be weak for small µ̃ while the middle row,
(c) and (d), reveals that γ is in proportion to µ̃ and U . From
the bottom row, (e) and (f), we know that the linear relation
is valid for small µ̃ and kzR and for low U . When U is
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Figure 7. Slow surface sausage mode. (a), (b): Re(Ω−)
vs. kzR, (c), (d): γ vs. kzR, (e), (f): γ/µ̃ vs. kzR where
µ̃ = ζ̃. The left and right columns show the µ̃ dependent
behavior for U/vsi=1.5 and 1.6, respectively.

sufficiently high and µ̃ is relatively large, one may anticipate
that γ deviates from the linear trend as kzR increases.

A similar behavior is obtained for the slow body mode
(sbs) 1. In Fig. 8, we plot (a) real and (b) imaginary parts of
the phase speed v− and (c) their ratio γ (=Im(v−)/Re(v−))
vs. kzR for slow body mode 1, with varying U/vsi where µ̃(=
ζ̃) = 10−4. Both parts of the phase speed shifts upward as
U increases and becomes positive when crossing the critical
speed. The value of γ is always positive except at kz = kc
and its order of magnitude is about −6. Fig. 8 (c) presents
that γ/µ̃ ≈ 10−2, similar to the slow surface sausage mode.
It has a peak at kzR ≈ 1.4, contrary to the slow surface
mode. The axial wavelength at the peak is comparable to
the diameter of the flux tube.

In Fig. 9 we display two flow cases for the slow body mode
1, U/vsi = 1.0 (left column) and U/vsi = 1.2 (right column),
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Figure 8. (a) Real and (b) imaginary parts of v−, and
(c) their ratio γ (=Im(v−)/Re(v−)) for the backward slow
body sausage mode 1 vs. kzR where µ̃ = ζ̃ = 10−4. The real
and imaginary parts of the phase speeds change their sign at
kzR ≈ 0.6 when U/vsi = 0.9.

by varying µ̃(= ζ̃). The top row, (a) and (b), shows the
variation of Re(v−) vs. kzR. Its dependence on µ̃ is tiny, but
tends to increases as U increases. The middle row, (c) and
(d), describes the growth rate γ vs. kzR while the bottom
row, (e) and (f), represents γ/µ̃ vs. kzR. In two cases, the
behavior of γ looks similar, but its normalized value γ/µ̃ is
different. The linear trend is valid only for small µ̃. After µ̃
is over a certain point it turns into a nonlinear regime and

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1

0 . 1 2

v/
v s

i

t i l d e ( µ)
 1 0 - 1

 1 0 - 2

 1 0 - 3

 1 0 - 4

 1 0 - 5

 1 0 - 6

U / v s i = 1 . 0

( a ) ( b )

0 . 2 2

0 . 2 4

0 . 2 6

0 . 2 8

0 . 3

0 . 3 2
t i l d e ( µ)

 1 0 - 1

 1 0 - 2

 1 0 - 3

 1 0 - 4

 1 0 - 5

 1 0 - 6

U / v s i = 1 . 2

0

1 x 1 0 � �

2 x 1 0 � �

3 x 1 0 � �

4 x 1 0 � �

γ

t i l d e ( µ)
 1 0 - 1

 1 0 - 2

 1 0 - 3

 1 0 - 4

 1 0 - 5

 1 0 - 6

( c )

0

2 x 1 0 � �

4 x 1 0 � �

6 x 1 0 � �

8 x 1 0 � �

t i l d e ( µ )
 1 0 - 1

 1 0 - 2

 1 0 - 3

 1 0 - 4

 1 0 - 5

 1 0 - 6

( d )

0 1 2 3 4 5
0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4
γ/t

ild
e(

µ
)

k z R

t i l d e ( µ)
 1 0 - 1

 1 0 - 2

 1 0 - 3

 1 0 - 4

 1 0 - 5

 1 0 - 6

( e )

0 1 2 3 4 5
0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

k z R

t i l d e ( µ)
 1 0 - 1

 1 0 - 2

 1 0 - 3

 1 0 - 4

 1 0 - 5

 1 0 - 6

( f )

Figure 9. Slow body sausage mode 1. (a), (b): Re(v−) vs.
kzR, (c), (d): γ vs. kzR, (e), (f): γ/µ̃ vs. kzR where µ̃ = ζ̃.
The left and right columns show the µ̃ dependent behavior
for U/vsi=1.0 and 1.2, respectively.

the peak at kzR ≈ 1.4 shifts to the right. The threshold of µ̃
for the deviation to the nonlinear trend becomes smaller as
U increases.

In Fig. 10 we show the effect of ζ̃ on γ for µ̃ = 10−6

((a) and (b)) and µ̃ = 10−4 ((c) and (d)). The left (right)
column denotes the results for the slow surface mode (slow
body mode 1) when U/vsi = 1.6 (1.2). The ζ̃-dependent
behavior of the γ/µ̃ looks similar for both modes. When the
value of ζ̃ is less than that of µ̃ its effect on γ is negligible.
When its order of magnitude is greater than that of µ̃, γ/µ̃
gives a noticeable increment. With a further increment of
ζ̃, γ/µ̃ reaches a maximum in the plot range of kzR, which
depends on the value of µ̃. It is found that when the value
of ζ̃ is sufficiently large a new peak appears for the surface
mode. Its position shifts to the left (to smaller kzR) as ζ̃
increases. On the other hand, for the body mode, the peak
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Figure 10. The dependence of γ/µ̃ on ζ̃. The left (right)
column represents the slow surface mode (slow body mode
1) with U/vsi=1.6 (1.2). The panels (a) and (b) are for
µ̃ = 10−6 and (c) and (d) are for µ̃ = 10−4.

position shifts, at first, to the right and then to the left as
ζ̃ increases (panel (b)). When µ̃ is further increases, the
motion of the peak is more complicate. Panel (d) shows that
the peak has zigzag motion. Comparing the top and bottom
rows, one may notice that the effect of ζ̃ on the increment
of γ/µ̃ becomes weaker as µ̃ increases. When µ̃ = 10−2, the
variation range of γ/µ̃ is tiny and γ/µ̃ ∼ 10−2 (see Fig. 7 (f)
and Fig. 9 (f)). The maximum growth rate is obtained when
ζ̃/µ̃ ∼ 103 − 106, depending on the wave mode and µ̃. We
point out that ζ̃ rather may give a negative effect on γ as
shown in panel (c) (the curves for ζ̃ ≥ 100).

Cowley’s theoretical treatment (1990) showed that µ ∼
4.1×10−4g/cms and the order of magnitude of ζ/µ can reach
7 in the upper photosphere. Adopting ρe ≈ 4.9×10−9g/cm3

and vse ∼ 10km/s, we obtain µ̃ ∼ 8.4 × 10−4m/R. Thus,
the more smaller the R, the stronger the viscosity. Since
µ̃ has inverse relation with the radius R, the waves in the
small scale flux tube can be more unstable and more easily
excited due to the DI in photospheric regions (see, e.g., Sec.
3.4 in Jess et al. 2023), contributing to the enhancement of
the wave propagations into the upper atmosphere.

4. CONCLUSIONS

We have studied the DI of sausage modes in a cylindrical
circular flux tube in the presence of flow shear and viscos-
ity shear. The equilibrium parameters have different val-
ues for the inside and the outside of the flux tube under
photospheric condition, having pressure balance at the tube

boundary r = R. We assume that the equilibrium (back-
groud) flow is inside and viscosity outside the flux tube. An
analytical formula, Eq (36), for the dispersion relation of the
linear sausage modes is derived without approximation.

We first considered the case µ̃ = ζ̃. When µ̃(= ζ̃) is suffi-
ciently small, the growth rate γ for the slow surface mode is
shown to increase with the increment of U/vsi and kzR. This
behavior is consistent with that in an incompressible limit,
while its magnitude is much smaller. It is also found that
the linear relationship between γ and µ̃ previously obtained
in the incompressible limit is valid.

For the slow body mode, the behavior of γ is slightly dif-
ferent. Its order of magnitude is similar to the slow surface
mode, while it has a peak at certain kzR that depends on
U/vsi and µ̃. The DI for the slow body mode is most strong
at the axial wavelength comparable to the diameter of the
cylinder when µ̃ is small.

The growth rate of both slow modes grows nonlinearly
after µ̃ crosses a point that depends on kzR and U/vsi.

When ζ ̸= µ the above features change. The bulk viscosity
ζ plays a more complicate role in the development of the DI.
For small µ̃, the effect of ζ̃ on γ becomes significant when
the order of magnitude of ζ̃ is 1 or more greater than that
of µ̃ and γ reaches a maximum at certain ζ̃, depending on
µ̃ and kzR. As µ̃ increases the influence of ζ̃ on γ becomes
less important. When ζ̃ is sufficiently strong, a new peak
for the slow surface mode appears and shifts to smaller kzR
with the increment of ζ̃. The peak for the slow body mode 1
gives more complicate motion depending on the value of µ̃.

Although the two viscosities are shown to substantially af-
fect the DI, its strength is still weaker than in the incompress-
ible limit, meaning that the compression plays the role of
suppressing the DI. Under photospheric condition, the crit-
ical speed ranges at the level of sound or cusp speed. To
obtain the DI, the critical speed for the DI has to be higher
than the phase speed of the slow modes as shown in Fig. 5.
It is the phase speed of the wave mode that needs to be
considered for estimating the critical velocity.

Sunspot or pore can be of interest for DI. But, as the
smaller radial size the stronger DI, to our view, the detection
of DI may be more available for small scale jets (Kotani &
Shibata 2020, Muglach 2021, Skirvin et al. 2023) or small
magnetic loops (Mart́ınez González & Bellot Rubio 2009,
Gömöry et al. 2010).

The theory for DI developed here does not include ion-
ization effect. For the lower solar atmosphere, especially
chromosphere, partial ionization of the plasmas has crucial
effect on the wave dynamics (e.g., Leake et al. 2014, Ballai
et al. 2015, Ballai et al. 2017, Mather et al. 2018, Alharbi
et al. 2022). The strong magnetization affects the viscosity,
modifying the viscosity terms used here into more compli-
cated forms (Braginskii 1965). These issues are beyond our
scope and will be pursued in a future study.

As we obtained an analytical solution for the linear MHD
sausage waves in a viscous plasma, other applications are
possible. For example, the effect of viscosity on the wave
damping can be quantitatively analysed and compared with
the effect of resistivity on it (see Geeraerts et al 2020). The
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DI in the presence of resistivity and flow shear is also an
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APPENDIX

A. DERIVATION OF THE WAVE EQUATION

OUTSIDE THE FLUX TUBE

Linearization of Eqs. (1)-(5) without the background flow
leads to

ρ̇1 +∇ · (ρ0v1)=0 (A1)

ρ0v̇1 +∇p1 +
B0 × (∇×B1)

µ0
=µ∇2v1 + ς∇(∇ · v1) (A2)

ṗ1 + γ0p0∇ · v1 =0 (A3)

Ḃ1 −∇× (v1 ×B0)=0, (A4)

where the dot denotes time derivative, B0 = (0, 0, B0) , and
ς = ζ+µ/3. Here the subscript 0 and 1 mean zeroth and first
order quantities, respectively. We start by using the notion
△ for the divergence of v1 = (vr, vϕ, vz) (e.g., Geeraerts et
al. 2020) as

△ = ∇ · v1 = ψ(r) exp[−i(ωt− kzz)]. (A5)

Eq. (A3) can be written as with the help of Eq. (A1)

ṗ1 = −γ0ρ0△ = v2s ρ̇1 (A6)

where the sound speed is vs =
√
γ0p0/ρ0. From Eq. (A4)

the perturbed magnetic field B1 = (br, bϕ, bz) can be written
as

Ḃ1 =B0∇× (v1ϕ,−v1r, 0)T

=B0

 ikzvr
ikzvϕ

− 1
r

∂(rv1r)
∂r

 , (A7)

where the components are

br =−kzB0

ω
v1r, (A8)

bϕ =−kzB0

ω
v1ϕ = 0, (A9)

bz =− iB0

ω

∂(rv1r)

r∂r
= − iB0

ω

(
v1r
r

+
∂v1r
∂r

)
. (A10)

We take time derivative of (A2), using Eq. (A7), to obtain

v̈1 =− 1

ρ0
∇ṗ1 −

1

µ0ρ0
B0 × (∇× Ḃ1) +

µ

ρ0
∇2v̇1 +

ς

ρ0
∇(∇ · v̇1)

= v2s∇△− 1

µ0ρ0
B0 × [∇× (∇× (v1 ×B0))] +

ς

ρ0
∇(△̇) +

µ

ρ0
∇2v̇1

= v2s∇△− 1

µ0ρ0
B0 × [∇[B0(∇× v1)z]−∇2(v1 ×B0)] +

ς

ρ0
∇(△̇) +

µ

ρ0
∇2v̇1

=

(
v2s +

ς

ρ0

∂

∂t

)
∇△− 1

µ0ρ0
{B0B0 ×∇[(∇× v1)z]−∇2[B0 × (v1 ×B0)]}+

µ

ρ0
∇2v̇1

=

(
v2s +

ς

ρ0

∂

∂t

)
∇△+ v2A

 (∇2v1)r
(∇2v1)ϕ − ∂Z

∂r

0

+
µ

ρ0
∇2v̇1, (A11)

where Z = (∇× v1)z = 1
r

∂(rv1ϕ)

∂r
.

Taking the divergence of Eq. (A11) gives

△̈=

(
v2s − iω

ς

ρ0

)
∇2△+

µ

ρ0
∇2(∇ · v̇1) + v2A

(
1

r

∂[r(∇2v1)r]

∂r

)

=

(
v2s − iω

ς

ρ0

)
∇2△+

µ

ρ0
∇2△̇+ v2A

[
∇2[∇ · (v1 − v1z)]

]

= v̄2s∇2△+ v2A

[
∇2[∇ · (v1 − v1z)]

]
=(v̄2s + v2A)∇2△− v2A∇2Γ, (A12)

where Γ = ∂v1z
∂z

and v̄2s = v2s − iω µ+ς
ρ0

.
Next, taking the derivative with respect to z on Eq. (A7)

and considering its z component, we obtain for Γ

Γ̈= v̄2s
∂2△
∂z2

+
µ

ρ0

∂2(∇2v1)z
∂t∂z
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= v̄2s
∂2△
∂z2

+
µ

ρ0

∂

∂t
(∇2Γ). (A13)

Combining Eqs. (A12) and (A13) we get the governing
wave equation for △

∂4△
∂t4

− (v̄2s + v2A)∇2△̈ (A14)

−∇2

[
µ

ρ0

∂3△
∂t3

− µ

ρ0
(v̄2s + v2A)∇2△̇ − v2Av̄

2
s
∂2△
∂z2

]
= 0.

This equation reduces to Eq. (3a) in Edwin & Roberts (1983)
when µ = ς = 0.

From Eq. (A14) and using the definition of △, (A5), the
perturbed radial velocity vr can be written in terms of △:

vr =
(v2s∗ + v2A∗)

ω2(ω2 − v2A∗k
2
z)

[
(ω2

c∗ − ω2) + iω3 µ

ρ0

v2A∗
v2A(v

2
s∗ + v2A∗)

]
∂△
∂r

+iω
µ

ρ0

v2A∗(v̄
2
s + v2A)

v2Aω
2(ω2 − v2A∗k

2
z)

∂∇2△
∂r

, (A15)

where v2s∗ = v2s − iω ς
ρ0
, v2A∗ = v2A − iω µ

ρ0
, and ω2

c∗ =
v2
A∗

(v2
s∗+v2

A∗)
k2z v̄

2
s .

From Eq. (A10), we derive the equation for bz as

bz =− iB0

ω

∂(rv1r)

r∂r
= − iB0

ω
(△− Γ)

=− iB0

ω

{
△− 1

ω2v2A

[
iω3 µ

ρ0
△+ iω

µ

ρ0
(v̄2s + v2A)∇2△

+ω2
Av̄

2
s△

]}
(A16)

=− iB0

ω

[
1− ω̄2

s

ω2
− i

µ

ρ0ωv2A
[ω2 + (v̄2s + v2A)∇2]

]
△.

Using Eq. (A6) and (A16) we obtain the equation for the
perturbed total pressure P

P =− iρ0v
2
A

ω

[
1 +

v2s
v2A

− ω̄2
s

ω2
− i

µ

ρ0ωv2A
[ω2 + (v̄2s + v2A)∇2]

]
△.

(A17)

We note that the equations for vr, bz, and P for the inside
of the flux tube can be obtained by setting µ = ζ = 0 and
ω → Ω in the above equations.

B. DISPERSION RELATION IN THE PRESENCE

OF SHEAR FLOW AND VISCOSITY

Combining Eqs. (20), (32), and (33), we derive a matrix
equation (34), focusing on the body modes,

X1 X2 X3

X4 X5 X6

X7 X8 X9

A1

A2

A3

 = XA = 0,

where

X1 =
ω

Ω

(ω2
si + ω2

Ai)(ω
2
ci − Ω2)J ′

0

Ω2(Ω2 − ω2
Ai)

, (B18)

X2 =−

[
(ω2

se∗ + ω2
Ae∗)(ω

2
ce∗ − ω2)

ω2(ω2 − ω2
Ae∗)

+ iµ̃k̃z
v2Ae∗ωseω

v2Ae(ω
2 − ω2

Ae∗)

(
1− (v̄2se + v2Ae)(k

2
+ + k2z)

ω2

)]
k+
ki
K′

0+, (B19)

X3 =−

[
(ω2

se∗ + ω2
Ae∗)(ω

2
ce∗ − ω2)

ω2(ω2 − ω2
Ae∗)

+ iµ̃k̃z
v2Ae∗ωseω

v2Ae(ω
2 − ω2

Ae∗)

(
1− (v̄2se + v2Ae)(k

2
− + k2z)

ω2

)]
k−
ki
K′

0−, (B20)

X4 =
iχωv2Ai

Ωv2Ae

(
1 +

v2si
v2Ai

− ω2
si

Ω2

)
J0, (B21)

X5 =

[
− i

(
1 +

v2se
v2Ae

− ω̄2
se

ω2

)
− ς̃

(
vseRω

v2Ae

)
+ µ̃

(
vseRω

v2Ae

)
(v̄2se + v2Ae)(k

2
+ − k2z)

ω2

]
K0+

+

[
− 2µ̃

(
vseRω

v2Ae

)
(ω2

se∗ + ω2
Ae∗)(ω

2
ce∗ − ω2)

ω2(ω2 − ω2
Ae∗)

− i2µ̃2 v2sek̃
2
zω

2v2Ae∗
v4Ae(ω

2 − ω2
Ae∗)

(
1− (v̄2se + v2Ae)(k

2
+ + k2z)

ω2

)]
k2+
k2z
K′′

0+, (B22)

X6 =

[
− i

(
1 +

v2se
v2Ae

− ω̄2
se

ω2

)
− ς̃

(
vseR

v2Ae

)
+ µ̃

(
vseRω

v2Ae

)
(v̄2se + v2Ae)(k

2
− − k2z)

ω2

]
K0−

+

[
− 2µ̃

(
vseRω

v2Ae

)
(ω2

se∗ + ω2
Ae∗)(ω

2
ce∗ − ω2)

ω2(ω2 − ω2
Ae∗)

− 2iµ̃2 v2sek̃
2
zω

2v2Ae∗
v4Ae(ω

2 − ω2
Ae∗)

(
1− (v̄2se + v2Ae)(k

2
− + k2z)

ω2

)]
k2−
k2z
K′′

0−, (B23)

X7 =
vAi

vAe

√
2v2Se + γv2Ae

2v2Si + γv2Ai

ω

Ω

(
1− ω2

si

Ω2

)
J0, (B24)

X8 =−

[
1− ω̄2

se

ω2
− iµ̃

(
vseRω

v2Ae

)(
1− (v̄2se + v2Ae)(k

2
+ + k2z)

ω2

)]
K0+, (B25)
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X9 =−

[
1− ω̄2

se

ω2
− iµ̃

(
vseRω

v2Ae

)(
1− (v̄2se + v2Ae)(k

2
− + k2z)

ω2

)]
K0−. (B26)

The function K0± denotes K0(k±R), χ = ρi/ρe, µ̃(ς̃) =
µ(ς)/ρevseR, and k̃z = kzR. For the surface modes J0
changes to I0.
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